A Hybrid Feature Selection Method for Software Fault Prediction
نویسندگان
چکیده
منابع مشابه
A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملFSCR: A Feature Selection Method for Software Defect Prediction
Prediction the number of faults in software modules can be more helpful instead of predicting the modules being faulty or non-faulty. Some regression models have been used for predicting the number of faults. However, the software defect data may involve irrelevant and redundant module features, which will degrade the performance of these regression models. To address such issue, this paper pro...
متن کاملGenetic Feature Selection for Software Defect Prediction
Recently, software defect prediction is an important research topic in the software engineering field. The accurate prediction of defect prone software modules can help the software testing effort, reduce costs, and improve the software testing process by focusing on fault-prone module. Software defect data sets have an imbalanced nature with very few defective modules compared to defect-free o...
متن کاملA Novel Feature Selection Method for Fault Diagnosis
A new method for automated feature selection is introduced. The application domain of this technique is fault diagnosis, where robust features are needed for modeling the wear level and therefore diagnosing it accurately. A robust feature in this field is one that exhibits a strong correlation with the wear level. The proposed method aims at selecting such robust features, while at the same tim...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2019
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2019edp7033